
19th Aug 2023

ScriptTV
Blockchain Security Assessment

PREFACE

1

Script Network Audit

PREFACE

Objectives

This document aims to highlight any identified bugs/issues in the provided codebase.
This audit has been conducted in a closed and secure environment, free from influence
or bias of any sort. This document may contain confidential information about IT
systems/architecture and the client's intellectual property. It also includes information
on potential risks and the processes involved in mitigating/exploiting the risks
mentioned below. The usage of the information provided in this report is limited,
internally, to the client. However, this report can be disclosed publicly to aid our
growing blockchain community; at the client's discretion.

Key Understandings

Page 2

Script Network Audit

TABLE OF CONTENT

PREFACE... 2
Objectives..2
Key Understandings.. 2

TABLE OF CONTENT.. 3
INTRODUCTION..5

Scope..6
Project Overview... 7
System Architecture...7
Methodology.. 9

AUDIT REPORT...10
Executive Summary...10

Classification & Proportion of
Vulnerabilities:...10

Issue Status Descriptions... 11
SUMMARY OF FINDINGS..12

Detailed Findings..14
Corrupted and Undefined Behavior in EVM Transactions... 14
Absence of Proposer/Guardian disincentivization mechanism exposes networks leads
to block stalling..16
Potential theft of Funds Due to Misconfigured RPC.. 18
Unenforced Memory limits renders node config suboptimal.. 20
CORS Misconfiguration in HTTP RPC Interface leads to Data leaks.................................. 22
Inefficient Peer Filtering Leading to Network Overhead... 25
Missing Lock on Wallet In Send Transaction.. 27
Lack of Sanity Checks leads inefficient tx_stake_reward_distribution............................ 29
Incompatibility Issues with New Solidity Versions (0.8.20 and Above)..............................31
Inconsistent Max Round Logic in GuardianEngine..32
Challenges in Running Tests Due to Parameter Value Changes..33
Unrestricted Validator Inclusion Beyond Limits..34
Potential Mis-information relay due to Incorrect Metric Server domain...........................36
Inconsistencies in Stake Deposit Values Between Code and Documentation................ 37
Redundant Verification Checks in Transaction Processing... 39
Potential performance optimization of `UpdateUnsafe` Function....................................40

Page 3

Script Network Audit

Unoptimized Blockchain Storage Due to Inactive Pruning.. 43
Missing Vote Validation check...45
Insecure Configuration of Message Signing and Verification in PubSub System......... 46

Miscellaneous Issues.. 47
TODO’s..47
Unused Functions...52
Unused Variables.. 53
Commented Code.. 53
Outdated Dependencies.. 53

DISCLAIMER...55

Page 4

Script Network Audit

INTRODUCTION
BlockApex (Auditor) was contracted by ScriptTV (Client) to conduct a comprehensive
security audit/Code Review. This document presents the findings of our analysis, which
started on 19th july, 2023.

Page 5

Name

ScriptTV Network

Auditors

Abdul Sami | Muhammad Jarir Uddin | Muhammad Abdullah | Gul Hameed

Platform

ScriptTV Network

Type of review

Manual Code Review | Automated Tools Analysis

Methods

Architecture Review | Functional Testing | Computer-Aided Verification | Manual Review

Git repository/ Commit Hash

Git Repo

White paper/ Documentation

White Paper

Document log

Initial Audit: 19th Aug 2023

Final Audit: 13 Oct 2023

https://github.com/scriptnetwork/script-Tv-blockchain/
https://whitepaper.script.tv/

Script Network Audit

Scope
The shared git-repository was checked for common code violations and
vulnerability-specific probing to detect major issues/vulnerabilities. Some specific
checks are as follows:

Code Review Functional Review

Sybil Attack Transaction Replay Attack Business Logics Review

Eclipse Attack
Time-Locked Transaction
Attack

Functionality Checks

Denial of Service
Attack

Unchecked math
Access Control &
Authorization

Http Input Attack Unsafe type inference Read-only Pointers

Long Range Attack Selfing Mining Overflows

EVM Incompatibility Deployment Consistency
Uncaught
Errors/Panics

Block Double
Production

Race Attack Out-of-Bounds error

Style guide violation Data Consistency Nil Pointer Exception

Cryptographic Attack
Indefinite Channel
Deadlock

Precompile
Invalidation

Chain Halt Network Partitions Goroutine Leaks

Page 6

https://github.com/slowmist/Cryptocurrency-Security-Audit-Guide/blob/main/Blockchain-Common-Vulnerability-List.md

Script Network Audit

Project Overview

Script TV, a fork of the Theta Network is a decentralized video delivery network that
furnishes an expansive range of blockchain-enabled solutions to the problems related
to the traditional video-streaming sector. The platform offers high-quality video
streaming as well as multiple incentive mechanisms for decentralized bandwidth and
content-sharing at a reduced cost as compared to conventional service providers.

The Script Blockchain is a purpose-built blockchain designed for video and data
relaying from the ground up. Script’s unique multi-BFT consensus design combines a
committee Validator Nodes with a second layer of community-run Validator Nodes.
Validator Nodes propose and produce new blocks in the chain, while Guardian and
Lightning Nodes seal blocks and act as a check on malicious or non-functional
Validator Nodes.

The Script blockchain mainnet enables the support for Turing-complete smart
contracts. Smart contracts open up a new set of user experiences and attribution
models for DApps built on the Script network. In addition to the Validator and
Lightning Nodes, the Script community members also host the Script Node, which
forms the Script Network, a fully decentralized network for data delivery and, more
generally, computing. This new fully decentralized technology stack adds the ability to
capture live video, transcode it in real-time, cache and relay live stream video data to
users globally - all through Script’s P2P network run by thousands of community
members. Not a single central server or service is used in this pipeline.

System Architecture

Introduction:
The Script Blockchain is a decentralized network designed to optimize video streaming
delivery and incentivize users to share their excess bandwidth and computing
resources. Its architecture is based on a hybrid Proof of Stake (PoS) and Byzantine
Fault Tolerance (BFT) consensus mechanism, enabling efficient and secure video
content distribution.

Page 7

Script Network Audit

Components:
Validator Nodes:
These are the core nodes responsible for proposing the blocks and validation.
Validator nodes are selected based on their Script tokens stake, participating in both
the PoS and BFT mechanisms. They ensure the network's security and integrity.

Guardian Nodes:
Guardian nodes support validator nodes by relaying transactions, validating
signatures, and participating in a lightweight PoS mechanism. They are also
responsible for penalizing malicious behavior and ensuring the network remains
robust.

Edge Nodes:
Edge nodes' purpose is to finalize the blocks. Edge nodes serve as caching and relay
points for video content, reducing the load on the main blockchain. They contribute
excess bandwidth and resources to the Script network and are rewarded with
Script(S-PAY) tokens.

Smart Contracts:
Script's smart contract functionality allows developers to create decentralized
applications (DApps) within the network. These contracts automate various processes,
enhancing the network's versatility and usability.

Consensus Mechanism:
Script employs a hybrid consensus mechanism combining PoS and BFT. PoS enables
token holders to participate in block validation, while the BFT component enhances
network security. This combination allows for fast transaction finality and high
throughput.

Security Measures:
Script's BFT mechanism ensures Byzantine fault tolerance, making the network
resilient against malicious attacks. Validators are selected based on their stake and
reputation, discouraging malicious behavior.
The Script Blockchain's system architecture combines PoS and BFT consensus,
optimizing video streaming delivery and incentivizing user participation. Through
validator nodes, edge nodes, and smart contracts, the network provides a
decentralized ecosystem for content distribution, benefiting both content creators and
consumers while ensuring security and scalability.

Page 8

Script Network Audit

Methodology
The codebase was audited using a filtered audit technique. Starting with the recon
phase, a basic understanding was developed, and the security researchers worked on
developing presumptions for the developed codebase and the relevant
documentation/whitepaper. Furthermore, the audit moved on with the manual code
reviews to find logical flaws in the codebase complemented with code optimizations,
software, and security design patterns, code styles, best practices, and identifying
false positives detected by automated analysis tools like semgrep.

Page 9

Script Network Audit

AUDIT REPORT

Executive Summary

Our team performed a technique called Filtered Audit, where 4 individuals separately
audited the Script-Tv Blockchain. After a thorough and rigorous manual testing
process involving line-by-line code review for bugs, an automated tool-based review
was carried out.

All the raised flags were manually reviewed and re-tested to identify any false
positives.

The audit has resulted in the identification of (19) potential issues in the codebase.

Classification & Proportion of
Vulnerabilities:

Page 10

of issues Severity Level

1 Critical

4 High

2 Medium

2 Low

10 Informatory

Script Network Audit

Issue Status Descriptions

Acknowledged: The issue has been recognized and is under review. It indicates that the
relevant team is aware of the problem and is actively considering the next steps or
solutions.

Fixed: The issue has been addressed and resolved. Necessary actions or corrections have
been implemented to eliminate the vulnerability or problem.

Closed: The issue is acknowledged as valid, but no corrective action has been taken by
the development team. Despite multiple confrontations, the provided justification for
inaction or the resolution offered is deemed unsatisfactory or weak.

Page 11

Script Network Audit

SUMMARY OF FINDINGS

ID Findings Severity Status

STB-001
Corrupted and Undefined Behavior in
EVM Transactions Critical Closed

STB-002
Absence of Proposer/Guardian
disincentivization exposes networks to
multiple undefined behaviors.

High Closed

STB-003
Potential theft of Funds Due to
Misconfigured RPC High Acknowledged

STB-004
Unenforced Memory limits renders
node config suboptimal High Fixed

STB-005
CORS Misconfiguration in HTTP RPC
Interface leads to Data leaks High Acknowledged

STB-006
Inefficient Peer Filtering Leading to
Network Overhead Medium Closed

STB-007 Missing Lock on Wallet In Send Transaction Medium Fixed

STB-008
Lack of Sanity Checks leads inefficient
tx_stake_reward_distribution Low Acknowledged

STB-009
Incompatibility Issues with New
Solidity Versions (0.8.20 and Above) Low Closed

STB-010
Inconsistent Max Round Logic in
Guardian Engine Informatory Fixed

STB-011
Challenges in Running Tests Due to
Parameter Value Changes Informatory Closed

STB-012
Unrestricted Validator Inclusion
Beyond Limits Informatory Acknowledged

Page 12

Script Network Audit

ID Findings Severity Status

STB-013
Potential Mis-information relay due to
Incorrect Metric Server domain Informatory Fixed

STB-014
Inconsistencies in Stake Deposit Values
Between Code and Documentation Informatory Fixed

STB-015
Redundant Verification Checks in
Transaction Processing Informatory Closed

STB-016
Potential performance optimization of
`UpdateUnsafe` Function Informatory Acknowledged

STB-017
Unoptimized Blockchain Storage Due
to Inactive Pruning Informatory Acknowledged

STB-018 Missing Vote Validation check Informatory Fixed

STB-019
Insecure Configuration of Message
Signing and Verification in PubSub
System

Informatory Fixed

Page 13

Script Network Audit

Detailed Findings

STB-001 Corrupted and Undefined Behavior in EVM
Transactions

Asset /ledger/vm/evm.go

Category Implementation Error

Status Pending

Rating Severity:Critical Likelihood:High Impact:High

Description:
The EVM enables the functionality of executing arbitrary logic in the system in a
decentralized fashion in a blockchain to increase its usability & allow general purpose
interaction. We deployed a simple solidity contract built using 0.6.12, 0.7+ & 0.8+ with a
simple function which increments a public variable. After sending the transaction
on-chain the calldata was somehow corrupted during the execution. This corrupted
data is visible both in the blockchain explorer and when queried from the CLI. The
issue is consistently reproducible, but the underlying cause remains unidentified.

Impact:

1. Data Integrity Loss: Corrupted data undermines the blockchain's promise of a
tamper-proof and transparent record, risking the validity and trustworthiness of
stored information.

2. Functional Disruption: The intended behavior of the contract could be
compromised, leading to potential malfunction or halted operations.

Page 14

Script Network Audit

Proof of Concept(PoC)

pragma solidity 0.6.12;

contract PushZero_Test{

uint256 public num;

function set(uint256 _n) public{

num = _n;

}

}

After deployment we invoked set(uint256) function and passing 2 as a parameter:
● Contract Address:

0xbd0279eebd259a8c0eff08b09a7f85db7751bd5b

● Expected Data

0x60fe47b1000

00002

● Received Data (on blockchain):

0x5950354873514

14141414141414141414141414142

// {YP5HsQAAAB} as shown below

Page 15

Script Network Audit

STB-002
Absence of Proposer/Guardian disincentivization
mechanism exposes networks leads to block
stalling.

Asset /consensus/engine.go:259-304

Category Logical Error, Consensus

Status Pending

Rating Severity:High Likelihood:Medium Impact:High

Description:
The consensus mainloop is a crucial mechanism of the blockchain. It runs indefinitely,
and checks for multiple actions that node must take i.e Voting, Proposing new blocks,
etc. to continue being a part of the blockchain. In the consensus mainloop of the
network, there is an absence of disincentivization mechanisms for proposers
(validators/guardians) who act maliciously. Though the slashing mechanism is
commented out, it exposes the network to a range of vulnerabilities and undefined
behaviors. In this specific scenario, there is a switch statement that runs if no block
has been received for the epoch & all validators proceed to the next epoch. This will
lead to block stalling as the proposer who was supposed to produce blocks is offline or
maliciously avoiding building blocks, this in turn results in significant delays in
transaction inclusion. Such delays can disrupt the normal functioning of the network
and degrade user experience. This has been verified individually by observation while
running the devnets locally & script testnet.

func (e *ConsensusEngine) mainLoop() {

defer e.wg.Done()

for {

e.enterEpoch()

e.propose()

Epoch:

for {

select {

case <-e.ctx.Done():

e.stopped = true

return

Page 16

Script Network Audit

case msg := <-e.incoming:

endEpoch := e.processMessage(msg)

if endEpoch {

break Epoch

}

// - - - Code Snipped - - -

case <-e.epochTimer.C:

e.logger.WithFields(log.Fields{"e.epoch":

e.GetEpoch()}).Debug("Epoch timeout. Repeating epoch")

e.vote()

break Epoch

// - - - Code Snipped - - -

}

}

}

Screen Shot:

Recommendation:
Implement strict disincentivization mechanisms, such as slashing of stakes or banning
of malicious nodes, to deter and penalize such behaviors.

Page 17

Script Network Audit

STB-003 Potential theft of Funds Due to Misconfigured
RPC

Asset Script/rpc/
Documentation

Category Misconfiguration

Status Pending

Rating Severity:High Likelihood:Medium Impact:High

Description:

The JSON-RPC service (disabled by default when running ./script start) is an
unauthenticated interface. If the JSON-RPC service is activated at port 16889, it
exposes the RPC with critical functionalities , which can lead to stealing of Funds.
Following are the calls which can be made on the /RPC.

● Send
● Newkey
● Listkeys
● Unlock_key
● Lockkey
● Iskey_Unlocked
● BroadCast_Raw_Transaction
● Broadcast_raw_transaction_async

Exploiting Scenario:
1. Attacker keeps sending the send transactions to the exposed RPC port.
2. Whenever the user will unlock the wallet the transaction will be executed

and funds will be transferred.
Recommendation:
Explicitly asking users to expose RPC is not a good choice, RPC should only be
exposed by experienced users. Moreover proper security guidelines should be
published on script documentation to how to secure the RPC port. Use of Nginx HTTP
basic Auth should be recommended to those who wish to enable RPC. There have been
active exploitation regarding exposed RPC and there are bots which scan nodes for
this type of attack.

Page 18

Script Network Audit

Reference:
● https://geth.ethereum.org/docs/interacting-with-geth/rpc
● https://medium.com/coinmonks/securing-your-ethereum-nodes-from-hackers-

8b7d5bac8986

Page 19

https://geth.ethereum.org/docs/interacting-with-geth/rpc
https://medium.com/coinmonks/securing-your-ethereum-nodes-from-hackers-8b7d5bac8986
https://medium.com/coinmonks/securing-your-ethereum-nodes-from-hackers-8b7d5bac8986

Script Network Audit

STB-004
Unenforced Memory limits renders node config
suboptimal

Asset script/mempool/mempool.go L-185

Category Misconfiguration

Status Pending

Rating Severity:High Likelihood:Medium Impact:High

Description:

The InsertTransaction function within the mempool.go file is tasked with adding new
transactions to the mempool. A constant named MaxMempoolTxCount is defined,
which seemingly serves as the upper boundary for the number of transactions the
mempool can hold. However, upon inspection of the function, the code responsible for
enforcing this limit is commented out. Consequently, there's nothing in place to stop
the mempool from accepting an unbounded number of transactions.

An unchecked accumulation of transactions in the mempool can lead to several
system challenges. Most critically, a continuous stream of transactions could cause the
mempool to consume all available system memory. This unchecked consumption can
potentially lead to memory leaks, buffer overflow, and other system-level anomalies
that could disrupt the normal functioning of the node and affect the performance of
the overall network.

Code Snippet

// if mp.size >= MaxMempoolTxCount {

// logger.Debugf("Mempool is full")

// return errors.New("mempool is full, please submit your

transaction again later")

// }

Recommendation:

Page 20

Script Network Audit

● Uncomment the code that enforces the MaxMempoolTxCount limit.
● Ensure that the logic checks against the MaxMempoolTxCount are

working effectively to prevent any addition of transactions past the
defined threshold.

Page 21

Script Network Audit

STB-005
CORS Misconfiguration in HTTP RPC Interface
leads to Data leaks

Asset script/rpc/server.go

Category Implementation Error

Status Pending

Rating Severity:High Likelihood:Medium Impact:High

Description:
The HTTP RPC interface, in its current state, permits unrestricted cross-origin requests
by having the Access-Control-Allow-Origin header configured to "*". Consequently, any
domain can send requests to this interface. This behavior exposes the system to
potential threats such as unauthorized access and data leaks. While the current
exposure might not leak sensitive information, if in the future any sensitive endpoint
becomes exposed, it could lead to unauthorized data access.

Code Snippet:

func corsMiddleware(handler http.Handler) http.Handler {

return http.HandlerFunc(func(w http.ResponseWriter, r

*http.Request) {

w.Header().Set("Access-Control-Allow-Origin", "*")

w.Header().Set("Access-Control-Allow-Headers", "*")

if r.Method == "OPTIONS" {

w.WriteHeader(http.StatusOK)

return

}

handler.ServeHTTP(w, r)

})

}

Page 22

Script Network Audit

Proof of Concept (PoC):
Below is an HTML page designed to send an AJAX request to the RPC server:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width,

initial-scale=1.0">

<title>AJAX Request Example</title>

<script

src="https://code.jquery.com/jquery-3.2.1.min.js"></script>

</head>

<body>

<button id="button">Make AJAX Request</button>

<div id="response"></div>

<script>

$(document).ready(function(){

$("#button").click(function(){

$.ajax({

type: "POST",

url: "http://{IP}:16888/rpc",

data:

'{"jsonrpc":"2.0","method":"script.GetGuardianInfo","params":[]

,"id":1}',

headers: {

"Content-Type": "application/json; charset=utf-8",

"Origin": "null"

},

success: function(data) {

$("#response").text(JSON.stringify(data, null, 2));

},

error: function(xhr, status, error) {

$("#response").text("Request failed with status: " +

status);

},

dataType: "json"

});

});

});

Page 23

Script Network Audit

</script>

</body>

</html>

Response

Recommendation:
● Review and modify the corsMiddleware function to only allow specific

trusted origins.
● Avoid using the wildcard (*) for the Access-Control-Allow-Origin header.
● While Running the node origin parameter to be passed as argument or

in it should be set in config.go file
Reference:

● https://github.com/ethereum/go-ethereum/blob/master/docs/audits/2
017-04-25_Geth-audit_Truesec.pdf

● https://talosintelligence.com/vulnerability_reports/TALOS-2017-0508

Page 24

https://github.com/ethereum/go-ethereum/blob/master/docs/audits/2017-04-25_Geth-audit_Truesec.pdf
https://github.com/ethereum/go-ethereum/blob/master/docs/audits/2017-04-25_Geth-audit_Truesec.pdf
https://talosintelligence.com/vulnerability_reports/TALOS-2017-0508

Script Network Audit

STB-006
Inefficient Peer Filtering Leading to Network
Overhead

Asset script/p2pl/peer/peer_table.go
script/p2pl/messenger/messenger.go

Category Misconfiguration

Status Pending

Rating Severity:Medium Likelihood: High Impact: low

Description:
The GetAllPeers function in the PeerTable class is intended to provide a list of peers
with an option to exclude edge nodes via the skipEdgeNode parameter. it currently
overlooks this detail. Given the primary role of edge nodes in the Script network—to
finalize blocks and serve as caching and relay points—this oversight can lead to a
surge in unnecessary resource consumption. As the network retrieves and processes
unwanted edge node data, it inevitably impacts network efficiency and introduces
unwarranted latency. Additionally, the system's message broadcasting functionality
also does not respect the skipEdgeNode directive. Consequently, data intended solely
for peers might inadvertently be transmitted to edge nodes.
Edge nodes are expected to be substantially more numerous than guardians and
validators, primarily due to their lower stake amount requirement. This prevalence of
edge nodes, combined with the aforementioned misconfiguration, can significantly
increase the risk of latency and reduced efficiency in the network.

Code Snippet:

// GetAllPeers returns all the peers

func (pt *PeerTable) GetAllPeers(skipEdgeNode bool) *([]*Peer) {

// TODO: support skipEdgeNode

pt.mutex.Lock()

defer pt.mutex.Unlock()

ret := make([]*Peer, len(pt.peers))

for i, p := range pt.peers {

ret[i] = p . . .

Impact:

Page 25

Script Network Audit

● As the network grows, the neglect of edge node filtering can contribute
to potential network congestion. This is particularly concerning as
unnecessary data which the network isn't intended to cater for becomes
a significant portion of network traffic.

● If edge nodes receive requests they aren't supposed to handle, it might
lead to unintended software behavior. This can pose a risk, especially if
the software isn't equipped to handle such unexpected interactions..

Recommendation:
● Modify GetAllPeers to implement the skipEdgeNode parameter for

filtering.

Page 26

Script Network Audit

STB-007
Missing Lock on Wallet In Send Transaction

Asset cmd/scriptcli/rpc/tx.go

Category Logical Flaw

Status Pending

Rating Severity:Medium Likelihood:Medium Impact:Medium

Description:
In Script, users have the ability to expose RPC ports for specific functionalities.
However, it's important to note that this practice is not recommended due to the
potential risks associated with improper RPC port configuration. Such
misconfiguration could lead to the complete loss of funds.
A behavior is observed when a user initiates a Send transaction via the RPC call on
port 16889. The wallet associated with the transaction is not automatically locked after
the RPC call is executed. This omission in locking the wallet can expose the funds to
potential security vulnerabilities. It is worth mentioning that Issue “Potential theft of
Funds Due to Misconfigured RPC” is different from this due to the fact that Disabling
or securing RPC will keep this issue unresolved.

func (t *ScriptCliRPCService) Send(args *SendArgs, result *SendResult) (err error) {

if len(args.From) == 0 || len(args.To) == 0 {

return fmt.Errorf("The from and to address cannot be empty")

}

if args.From == args.To {

return fmt.Errorf("The from and to address cannot be identical")

}

.

.

.

. // Omitted for brevity

if !t.wallet.IsUnlocked(from) {

return fmt.Errorf("The from address %v has not been unlocked yet", from.Hex())

}

inputs := []types.TxInput{{

Address: from,

Coins: types.Coins{

SpayWei: new(big.Int).Add(spaywei, fee),

ScriptWei: scptwei,

},

Page 27

Script Network Audit

Impact:
Without wallet locking, any subsequent unauthorized access to the wallet could lead to
the unauthorized transfer of funds, compromising the user's assets.

Recommendation:
It is recommended to add “Defer wallet.lock(from)” after
‘t.wallet.IsUnlocked(from)’ so that the wallet is locked as the send transaction is
successfully sent.

Page 28

Script Network Audit

STB-08
Lack of Sanity Checks leads inefficient
tx_stake_reward_distribution

Asset ledger/execution/tx_stake_reward_distribution.go

Category Logical Flaw , Commented Functions

Status Pending

Rating Severity:Low Likelihood:High Impact:Low

Description:
Within the "ledger/execution/tx_stake_reward_distribution.go" file, a security
concern has been identified regarding the stake reward distribution transaction. In this
transaction type, sanity checks are performed to ensure their integrity and validity.
However, it has been observed that these sanity checks have been commented out in
the code, rendering them inactive during transaction execution. Following checks are
needed to be performed as per the commented code.

● Check if the A Validator is also a Guardian , reward split is not possible
for that validator.

● Validate transactions related to guardian and prevent cases where a
beneficiary is also a staker.

● Validate transactions related to elite edge nodes and prevent scenarios
where a beneficiary is also a staker

● Identify and handle transactions with unrecognized or invalid purposes,
providing an error message for such cases.

This omission can lead to the acceptance of invalid transactions, jeopardizing the
overall security and reliability of the system.

func (exec *StakeRewardDistributionTxExecutor) sanityCheck(chainID string, view

*st.StoreView, viewSel core.ViewSelector, transaction types.Tx) result.Result {

blockHeight := view.Height() + 1 // the view points to the parent of the current

block

if tx.SplitBasisPoint > 1000 { // initially we only allow up to 10.00% reward split

return result.Error("Only allow at most 10.00%% reward split for the beneficiary for

Page 29

Script Network Audit

now (i.e., SplitBasisPoint <= 1000)")

}

// stakeHolderAddress := tx.Holder.Address

//

// —– SNIP —- L:66 - L:100

// }

if minTxFee, success := sanityCheckForFee(tx.Fee, blockHeight); !success {

return result.Error("Insufficient fee. Transaction fee needs to be at least %v

SpayWei",

minTxFee).WithErrorCode(result.CodeInvalidFee)

Impact:
The absence of active sanity checks in the stake reward distribution transaction
can lead to several consequences. As per the commented sanity check

● Beneficiary can be a staker address as of now, In the future if this code
is enabled it will result in inconsistency or favorable & unfair advantage
to other stakers.

● Future updates will have inconsistent state if enabled.

Recommendation:
If the commented Sanity Checks are not required they should be removed from code.

Page 30

Script Network Audit

STB-09
Incompatibility Issues with New Solidity
Versions (0.8.20 and Above)

Asset ledger/execution/tx_split_rule.go
ledger/execution/tx_deposit_stake.go

Category Implementation error

Status Pending

Rating Severity:Low Likelihood: Low Impact: High

Description:
The network exhibits an incompatibility issue when interfacing with contracts compiled
using Solidity versions 0.8.20 and subsequent releases. This incompatibility will always
result in failure of contract deployment and loss in an amount of tokens paid for the
transaction.
Code Snippet:

pragma solidity 0.8.20;

contract PushZero_Test{

uint256 public num;

function set(uint256 _n) public{

num = _n;

}

}

Screen Shot:

Recommendation:
Introduce compatibility with contracts compiled with this version and above.

Page 31

Script Network Audit

STB-010 Inconsistent Max Round Logic in
GuardianEngine

Asset script/consensus/guardian.go
script/consensus/elite_edge_node.go

Category Logical Error

Status Pending

Rating Severity:Info Likelihood:High Impact:Low

Description:
The GuardianEngine/EliteEdgeNodeEngine structure defines a MaxRound constant,
set to 10 which is expected to Represent the maximum round number. However , in the
StartNewRound function the logic Checks “if g.round < maxRound” , which means that
the round number will never reach the Defined MaxRound value of 10, it will always end
at 9.
Code Snippet:

maxRound = 10

func (g *GuardianEngine) StartNewBlock(block common.Hash) {

g.mu.Lock()

defer g.mu.Unlock()

g.block = block

g.nextVote = nil

g.currVote = nil

g.round = 1 . . .

}

func (g *GuardianEngine) StartNewRound() {

g.mu.Lock()

defer g.mu.Unlock()

if g.round < maxRound {

g.round++ . . .

}

Recommendation:
Adjust the logic to allow the round number to reach maxRound by checking if g.round
<= maxRound instead.

Page 32

Script Network Audit

STB-011 Challenges in Running Tests Due to Parameter
Value Changes

Asset script/*test

Category Test Execution and Reliability Issues

Status Pending

Rating Severity:Info Likelihood:Low Impact:Medium

Description:
During our audit of the ScriptTV blockchain, we observed that there were significant
challenges encountered when attempting to run tests. This was primarily attributed to
changes in parameter values. The inability to effectively run the majority of the tests
indicates a potential lack of rigorous testing in the project. If tests are not properly
executed or if they fail due to configuration or parameter issues, it can result in
undiscovered vulnerabilities or defects in the production environment.

Recommendation:
Conduct a comprehensive review of the test suite to identify which tests are failing
and why.
If parameter values have changed, ensure that their corresponding test cases are
updated to reflect these changes.

Page 33

Script Network Audit

SPB-012
Unrestricted Validator Inclusion Beyond Limits

Asset /consensus/validator.go

Category Misconfiguration,Logical Flaw

Status Pending

Rating Severity:Info Likelihood:Low Impact:Low

Description:

ScriptTv Documentation suggests Maximum number of validators ranges between
10-20 which are selected by Script and it depends upon testnet participation.
Participants that bought Script during initial sale are eligible after KYC by team.

As per code MaxNumber of validators defined are “31”.

const MaxValidatorCount int = 31

However, when a user deposits to stake as validator, there is no check for the
MaxValidator in sanityCheck function hence after the max cap has reached as per the
documentation , an address can be added into the ValidatorCandidatePool (vcp)
resulting in increment of the validator set. These validators won’t participate in block
proposing or voting, they will simply be available for relaying transactions in the
network without any incentive.

if tx.Purpose == core.StakeForValidator {

sourceAccount.Balance = sourceAccount.Balance.Minus(stake)

stakeAmount := stake.ScriptWei

vcp := view.GetValidatorCandidatePool()

err := vcp.DepositStake(sourceAddress, holderAddress, stakeAmount, blockHeight)

if err != nil {

return common.Hash{}, result.Error("Failed to deposit stake, err: %v", err)

}

view.UpdateValidatorCandidatePool(vcp)

ledger/execution/tx_deposit_stake.go
func (vcp *ValidatorCandidatePool) sortCandidates() {

sort.Slice(vcp.SortedCandidates[:], func(i, j int) bool { // descending order in

(totalStake, holderAddress)

stakeCmp :=

Page 34

Script Network Audit

vcp.SortedCandidates[i].TotalStake().Cmp(vcp.SortedCandidates[j].TotalStake())

if stakeCmp == 0 {

return strings.Compare(vcp.SortedCandidates[i].Holder.Hex(),

vcp.SortedCandidates[j].Holder.Hex()) >= 0

core/validator.go
func SelectTopStakeHoldersAsValidators(vcp *core.ValidatorCandidatePool)

*core.ValidatorSet {

maxNumValidators := MaxValidatorCount

topStakeHolders := vcp.GetTopStakeHolders(maxNumValidators)

valSet := core.NewValidatorSet()

for _, stakeHolder := range topStakeHolders {

valAddr := stakeHolder.Holder.Hex()

valStake := stakeHolder.TotalStake()

if valStake.Cmp(core.Zero) == 0 {

continue}

validator := core.NewValidator(valAddr, valStake)

valSet.AddValidator(validator)}

return valSet

}

consensus/validator.go

Recommendation:

It is recommended to enforce the limit upon deposit if the max cap for the validators
is reached.

Page 35

Script Network Audit

STB-013
Potential Mis-information relay due to
Incorrect Metric Server domain

Asset mempool/tx_bookkeeper.go

Category Logical Flaw

Status Pending

Rating Severity:Info Likelihood: - Impact:Low

Description:
In the "config.go" file, a potential issue has been identified concerning the definition of
the metric server. Within the code,
viper.SetDefault(CfgMetricsServer,"http://guardian-metrics.scripttok
en.org/") configures the metric server address. However, upon inspection, it has
been observed that there is no deployed service on the provided server. As a
consequence, this flaw opens up a potential attack vector where an attacker could
claim ownership of the "scripttoken.org" domain and create a subdomain matching
the server address. By doing so, the attacker can intercept the reported metrics,
posing a significant security risk.

Impact:
An attacker who successfully controls the subdomain can intercept reported metrics
from the vulnerable nodes & relay mis-information.

Recommendation:
To address this security concern and mitigate potential attacks, Ensure that the metric
server specified in the configuration (http://guardian-metrics.scripttoken.org/) is
operational and securely hosted. Deploy relevant services on the designated server to
collect and manage metrics from the reporting nodes.

Page 36

Script Network Audit

STB-014 Inconsistencies in Stake Deposit Values
Between Code and Documentation

Asset /script/core/validator.go
/script/core/guardian.go
/script/core/elite_edge_node.go

Category Documentation Mismatch

Status Pending

Rating Severity: Info Likelihood: - Impact:low

Description:
There are discrepancies between the documented values for stake deposits and their
actual values as set in the code. Specifically:

● MinValidatorStakeDeposit is commented to be "at least 2,000,000 Script", but
its set value is 1,000,000 Script.

● MinValidatorStakeDeposit200K is commented to be "reduced to 200,000
Script", but its set value is also 1,000,000 Script.

● MinEliteEdgeNodeStakeDeposit is documented to be "at least 10,000 SPAY",
but its set value is 5,000 SPAY.

● MaxEliteEdgeNodeStakeDeposit is documented to be "should not exceed
500,000 SPAY", but its set value is again 5,000 SPAY.

Code Snippets:
For MinValidatorStakeDeposit and MinValidatorStakeDeposit200K:

// Each stake deposit needs to be at least 2,000,000 Script

MinValidatorStakeDeposit =

new(big.Int).Mul(new(big.Int).SetUint64(1000000),

new(big.Int).SetUint64(1000000000000000000))

// Minimum Validator stake deposit reduced to 200,000 Script

MinValidatorStakeDeposit200K =

new(big.Int).Mul(new(big.Int).SetUint64(1000000),

new(big.Int).SetUint64(1000000000000000000))

Page 37

Script Network Audit

For MinEliteEdgeNodeStakeDeposit and MaxEliteEdgeNodeStakeDeposit:

// Each elite edge node stake deposit needs to be at least 10,000

SPAY

MinEliteEdgeNodeStakeDeposit =

new(big.Int).Mul(new(big.Int).SetUint64(5000),

new(big.Int).SetUint64(1e18))

// Each elite edge node stake deposit should not exceed 500,000

SPAY

MaxEliteEdgeNodeStakeDeposit =

new(big.Int).Mul(new(big.Int).SetUint64(5000),

new(big.Int).SetUint64(1e18))

var (

MinGuardianStakeDeposit *big.Int

MinGuardianStakeDeposit1000 *big.Int

)

func init() {

// Each stake deposit needs to be at least 10,000 Script

MinGuardianStakeDeposit =

new(big.Int).Mul(new(big.Int).SetUint64(10000),

new(big.Int).SetUint64(1e18))

// Lowering the guardian stake threshold to 1,000 Script

MinGuardianStakeDeposit1000 =

new(big.Int).Mul(new(big.Int).SetUint64(10000),

new(big.Int).SetUint64(1e18))

}

Recommendation:
● Review and align the code values with the comments or vice versa to ensure

consistency between the documentation and the actual code implementation.
● Regularly update code comments/documentation when making changes to

maintain clarity and avoid confusion for developers.

Page 38

Script Network Audit

STB-015 Redundant Verification Checks in Transaction
Processing

Asset /script/ledger/execution/tx_split_rule.go
/script/ledger/execution/tx_deposit_stake.go

Category Code Redundancy

Status Pending

Rating Severity:Info Likelihood:Medium Impact: low

Description:
There are redundant verification checks in multiple transaction processing functions:

● In tx_split_rule.go, the SplitRuleTxExecutor sanity check function contains an
unnecessary verification for the percentage value. As percentage is an uint
(unsigned integer), it cannot be negative, making the check if percentage < 0
redundant.

● In tx_deposit_stake.go, a check exists to verify if the stake is valid and
non-negative. If the internal logic for IsValid() inherently confirms
non-negativity or vice-versa, then the checks become extraneous.

if percentage < 0 {

return result.Error("Percentage needs to be positive")

}

if !stake.IsValid() || !stake.IsNonnegative() {

return result.Error("Invalid stake for stake deposit!").

WithErrorCode(result.CodeInvalidStake)

}

Recommendation:
● Review and remove the redundant check if percentage < 0 from the

SplitRuleTxExecutor function in tx_split_rule.go.
● IsValid() already checks for IsNonnegative() tx_deposit_stake.go, therefore

IsNonnegative() can be safely removed.

Page 39

Script Network Audit

STB-016 Potential performance optimization of
`UpdateUnsafe` Function

Asset script/mempool/mempool.go

Category Logical Error

Status Pending

Rating Severity:Info Likelihood:low Impact:low

Description:
The UpdateUnsafe function in the mempool module can be optimized to reduce
computational overhead and improve transaction processing efficiency. The function
is frequently called. Optimizing this function can enhance transaction processing
speed and overall system efficiency.

Code Snippet

// UpdateUnsafe is the non-locking version of Update. Caller must

call Mempool.Lock() before

// calling this method.

func (mp *Mempool) UpdateUnsafe(committedRawTxs []common.Bytes) {

start := time.Now()

mp.removeTxs(committedRawTxs)

removeCommittedTxTime := time.Since(start)

// Remove Txs that have become obsolete.

start = time.Now()

count := 0

invalidTxs := []common.Bytes{}

txGroups := mp.candidateTxs.ElementList()

for _, txGroupEl := range *txGroups {

txGroup := txGroupEl.(*mempoolTransactionGroup)

txs := txGroup.txs.ElementList()

for _, txEl := range *txs {

count++

Page 40

Script Network Audit

mempoolTx := txEl.(*mempoolTransaction)

// Check for outdated txs

txHash :=

getTransactionHash(mempoolTx.rawTransaction)

_, exists := mp.txBookeepper.getStatus(txHash)

if !exists {

// Tx has been removed from bookkeeper due to

timeout

invalidTxs = append(invalidTxs,

mempoolTx.rawTransaction)

continue

}

checkTxRes := mp.ledger.ScreenTxUnsafe(mempoolTx.rawTransaction)

if !checkTxRes.IsOK() {

invalidTxs = append(invalidTxs, mempoolTx.rawTransaction)

mp.txBookeepper.markAbandoned(mempoolTx.rawTransaction)

}

}

}

screenTxTime := time.Since(start)

start = time.Now()

mp.removeTxs(invalidTxs)

removeInvalidTxTime := time.Since(start)

logger.Debugf("UpdateUnsafe: %d tx screened in %v,

removeCommittedTxTime = %v, removed %d obsolete Txs in %v: %v,",

count, screenTxTime, removeCommittedTxTime, len(invalidTxs),

removeInvalidTxTime, invalidTxs)

}

1. Batch Removal of Transactions:
● Issue: The function calls removeTxs twice, leading to redundant iterations.

Page 41

Script Network Audit

● Recommendation: Combine committedRawTxs and invalidTxs and call
removeTxs once.

2. Efficient Data Structures:
● Issue: Slices are used for storing transactions, leading to O(n)

lookups/removals.
● Recommendation: Consider hashmaps for O(1) operations

Performance Impact:
Current complexities can reach O(n^2) in certain operations. Proposed optimizations
can reduce most operations to O(n).

Page 42

Script Network Audit

STB-017
Unoptimized Blockchain Storage Due to Inactive
Pruning

Asset ledger/ledger.go
consensus/engine.go

Category Unimplemented Functionality

Status Pending

Rating Severity:Info Likelihood:Low Impact:Medium

Description:

In the assessed codebase, blockchain pruning functionality has been deliberately
disabled. Blockchain pruning is a technique used to optimize storage & efficient
syncing by selectively removing older data while preserving data integrity. In this case,
the absence of blockchain pruning suggests that the system retains the entire
transaction history, which might have implications for storage, performance, and
scalability.

func (e *ConsensusEngine) pruneState(currentBlockHeight uint64) {

// Permanently disabled

return

.

.

.

}

consensus/engine.go

func (ledger *Ledger) PruneState(targetEndHeight uint64) error {

// Permanently disabled

return nil

.

.

.

Page 43

Script Network Audit

}

ledger/ledger.go
Impact:
The decision to disable blockchain pruning can have several notable impacts on the
system

Increased Storage Requirements: Storing the entire transaction history without
pruning can lead to significant increases in storage demands over time. This could
potentially strain system resources and lead to storage-related issues, particularly as
the blockchain dataset grows.

Synchronization Delays: New nodes or participants entering the network will
experience longer synchronization times since they need to download and verify the
entire historical blockchain. This can deter potential users from engaging with the
system.

Recommendation:
It is recommended to enable pruning as it optimizes the storage and reduces the
overhead which is a general practice among many different blockchains. If it is not
required in the current or future implementations, then all the relevant code should be
removed from the codebase.

Page 44

Script Network Audit

STB-018
Missing Vote Validation check

Asset consensus/guardian.go

Category Commented Code, Unimplemented Functionality

Status Pending

Rating Severity:Info Likelihood: - Impact: -

Description:

func(g *GuardianEngine) validateVote(vote *core.AggregatedVotes) (res bool) {

...

if !g.checkMultipliesForRound(vote, g.round) {

g.logger.WithFields(log.Fields{

"local.block": g.block.Hex(),

"local.round": g.round,

"vote.block": vote.Block.Hex(),

"vote.Mutiplies": vote.Multiplies,

"vote.gcp": vote.Gcp.Hex(),

"local.gcp": g.gcpHash.Hex(),

}).Debug("Ignoring guardian vote: multiples exceed limit for round")

return

The check checkMultipliesForRound(vote, g.round) will always return true as the
function is commented out hence this check will not run, as true is being returned
each time.

func (g *GuardianEngine) checkMultipliesForRound(vote *core.AggregatedVotes, k

uint32) bool {

// for _, m := range vote.Multiplies {

// if m > g.maxMultiply(k) {

// return false

// }

// }

return true

}

Page 45

Script Network Audit

Recommendation:
It is recommended to implement the functionality for multiplies_check to maintain the
integrity of the EEN Votes.

STB-019
Insecure Configuration of Message Signing and
Verification in PubSub System

Asset p2pl/messenger/messenger.go

Category Misconfiguration

Status Pending

Rating Severity:Info Likelihood:High Impact:Low

Description:
The CreateMessenge configures the PubSub subsystem in a manner that disables two
critical security features related to message signing and its verification

psOpts := []ps.Option{

ps.WithMessageSigning(false),

ps.WithStrictSignatureVerification(false),

}

pubsub, err := ps.NewGossipSub(ctx, host, psOpts...)

By turning off these security measures:
● The system does not ensure that each message is signed by the claimed sender

(ps.WithMessageSigning(false)).
● The system does not require a valid signature matching the sender's public key

(ps.WithStrictSignatureVerification(false))
Impact:

● Loss of Trust: Peers in the network cannot trust the authenticity of received
messages.

● Spread of False Information: Peers might act based on false data, assuming
it's from a trusted source.

● Potential System Disruption: Malicious nodes can exploit this insecure
configuration to disrupt system operations.

Recommendation:

Page 46

Script Network Audit

Enable message signing & strict signature verification by setting the variable to true

Miscellaneous Issues

TODO’s
The presence of various TODOs throughout the repository are listed below. The
developers should review these to address critical issues, optimizations, or
clarifications.

common/metrics/memory.md:

76:TODO 0.808 kB resident per counter.**

152:TODO 15.084 resident per histogram.**

consensus/validator.go:

105: // TODO: replace with more secure randomness.

core/stake.go:

96: // TODO: Should rename StakeHolder to StakeDelegate

crypto/bn256/google/bn256.go:

30 // BUG(agl): this implementation is not constant time.

31: // TODO(agl): keep GF(p²) elements in Mongomery form.

crypto/ecies/README:

56: TODO

crypto/secp256k1/curve.go:

115: //TODO: double check if the function is okay

crypto/secp256k1/secp256_test.go:

160: // TODO: why do we flip around the recovery id?

crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c:

422: /* TODO set z = 1, then do num_tests runs with random z

values */

crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.j

ava:

152: //TODO add a 'compressed' arg

crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Te

st.java:

14: //TODO improve comments/add more tests

crypto/sha3/sha3.go:

142: todo := d.rate - len(d.buf)

dispatcher/dispatcher.go:

136: // TODO: for 1.3.0 upgrade only, delete it after the upgrade

completed

ledger/ledger.go:

Page 47

Script Network Audit

743: // TODO: potentially O(m*n) runtime complexity, but the

number of stakes

ledger/execution/executils.go:

16: // TODO: need to implement the following two functions

ledger/execution/tx_coinbase.go:

240: // TODO - Need to confirm: should we get the VCP from the

current view?

306: // TODO - Need to confirm: should we get the VCP from the

current view?

ledger/execution/tx_release_fund.go:

82: // TODO: revisit whether we should panic or just log the

error.

ledger/execution/tx_slash.go:

118: // TODO: We should transfer the collateral to a special

address, e.g.

144: // TODO: need proper logging and error handling here.

ledger/execution/tx_smart_contract.go:

191: // TODO: Add tx receipt: status and events

ledger/types/account.go:

18: // TODO: replace the slice with map

320: // TODO: The proof can be simplied to only contain the signed

. . .

ledger/types/eth_tx_utils.go:

141:// TODO: copy pointed-to address

ledger/types/reserved_fund.go:

72: // TODO: this implementation is not very efficient

ledger/types/tx.go:

620: // TODO: remove chainID from all Tx sign bytes.

653: // TODO: verify it is signed

ledger/vm/asm/compiler.go:

174: // TODO figure out how to return the error properly

node/node.go:

73: // TODO: check if this is a guardian node

p2p/connection/auth.go:

430: // TODO: fewer pointless conversions

455: // TODO: replace this when Msg contains the protocol type

code.

516: // TODO: check overflow

p2p/connection/connection.go:

430: // TODO: replace with lightweight Reset()

Page 48

Script Network Audit

521: // TODO: error handling

p2p/messenger/addr_book_test.go:

98:// TODO: do more testing :)

p2p/messenger/addr_book.go:

594: // TODO: Move to old probabilistically.

811: // TODO refactor to return error?

p2p/messenger/discovery.go:

172:// TODO: may need to stop peer regardless of the remote

address . . .

p2p/netutil/net_addr_test.go:

73: // TODO add more test cases

97: // TODO add more test cases

p2p/netutil/net_addr.go:

161: // TODO(oga) bitcoind doesn't include RFC3849 here, but

should we?

p2p/netutil/upnp.go:

8: // BUG(jae): TODO: use syscalls to get actual ourIP.

350: // TODO: check response to see if the port was forwarded

376: // TODO: check response to see if the port was deleted

p2pl/messenger/messenger.go:

572:// TODO: support skipEdgeNode

p2pl/peer/peer_table.go:

139: // TODO: support skipEdgeNode

243: // TODO: support skipEdgeNode

p2pl/transport/stream.go:

74: // TODO: Read implements the io.Reader

105: // TODO: figure out close vs reset

112: // TODO: figure out close vs reset

p2pl/transport/buffer/recv_buffer.go:

142: // TODO: protection for attacks, e.g. send a very large

message to peers

rlp/decode.go:

129: // TODO: this could use a Stream from a pool.

137: // TODO: this could use a Stream from a pool.

rlp/encode.go:

194: // TODO: encode to w.str directly

398: // TODO: encode int to w.str directly

rpc/query.go:

554: // TODO: use ID() instead after 1.3.0 upgrade

rpc/lib/rpc-codec/jsonrpc2/context_test.go:

Page 49

Script Network Audit

74: //- TODO batch call all

rpc/lib/rpc-codec/jsonrpc2/protocol_test.go:

633: // TODO test for rpc.ErrShutdown && io.ErrUnexpectedEOF

snapshot/snapshot_import.go:

1001: // TODO: this would lead to mismatch between the proven and

retrieved .

store/treestore/treestore.go:

96: // TODO: find alternative way without traversal

wallet/coldwallet/usb_hub.go:

67: // TODO(karalabe): remove if hotplug lands on Windows

wallet/coldwallet/hid/hidapi/libusb/hid.c:

205: /*TODO: Implement this function on hidapi/libusb.. */

1495:/* TODO: Do we need this? */

wallet/coldwallet/hid/hidapi/mac/hid.c:

609: /*TODO: CFRunLoopGetCurrent()*/

1025: /* TODO: */

1033: /* TODO: */

wallet/coldwallet/hid/hidapi/windows/hid.c:

400: /* TODO: Determine Size */

504: /* TODO: Merge this with the Linux version. This function is

. . .

520: /* TODO: Merge this functions with the Linux version. This

function . ..

wallet/coldwallet/hid/libusb/libusb/os/haiku_usb_backend.cpp:

138: // TODO Handle this error

wallet/coldwallet/hid/libusb/libusb/os/sunos_usb.c:

1276:/* TODO */

wallet/coldwallet/hid/libusb/libusb/os/threads_posix.c:

77: /* TODO: NetBSD thread ID support */

wallet/coldwallet/hid/libusb/libusb/os/threads_windows.c:

69: (ToDo: check that abandoned is ok)

93:(ToDo: check that abandoned is ok)

wallet/coldwallet/hid/libusb/libusb/os/windows_usbdk.c:

737: //TODO: Check whether we can support this in UsbDk

wallet/coldwallet/hid/libusb/libusb/os/windows_winusb.c:

476: // TODO: (post hotplug): try without sanitizing

2568: // TODO: can we move this whole business into the K/0 DLL?

2934: // TODO: (post hotplug): see if we can force eject the

device and . . .

Page 50

Script Network Audit

wallet/coldwallet/hid/libusb/libusb/os/windows_winusb.h:

135: // TODO (v2+): move hid desc to libusb.h?

wallet/coldwallet/keystore/trezor.go:

309: //TODO

wallet/coldwallet/keystore/trezor/protobuf.go:

421: //TODO

423: //TODO

460: //TODO

462: //TODO

wallet/coldwallet/keystore/trezor/transport.go:

80://TODO: should be Model

wallet/softwallet/keystore/ks_encrypted.go:

348: // TODO: can we do without this when unmarshalling dynamic

JSON?

Page 51

Script Network Audit

Unused Functions
Our code review process identified certain functions that are either unused or have
been left as stubs without a proper implementation. Addressing these areas can lead
to cleaner, more maintainable code, and in some cases, enhanced efficiency and
robustness
Note: This is not an exhaustive list. The team should perform a thorough review to
identify and remove any other unused functions.

● Location:
/script/store/database/backend/leveldb.go
Function:

func (dt *table) Close() {

// Do nothing; don't close the underlying DB.

}

● Location:
p2pl/transport/stream.go
Functions:

// SetDeadline is a stub

func (s *BufferedStream) SetDeadline(t time.Time) error {

return nil

}

// SetReadDeadline is a stub

func (s *BufferedStream) SetReadDeadline(t time.Time) error {

return nil

}

// SetWriteDeadline is a stub

func (s *BufferedStream) SetWriteDeadline(t time.Time) error {

return nil

}

● Location:
/script/p2pl/messenger/notify.go
Functions:

func (p *PeerNotif) OpenedStream(n network.Network, s

Page 52

Script Network Audit

network.Stream) {

// peerID := s.Conn().RemotePeer()

// logger.Infof("OpenedStream %v", peerID)

}

func (p *PeerNotif) ClosedStream(n network.Network, s

network.Stream) {

// peerID := s.Conn().RemotePeer()

// logger.Infof("ClosedStream %v", peerID)

}

func (p *PeerNotif) Listen(n network.Network, _ ma.Multiaddr) {

}

func (p *PeerNotif) ListenClose(n network.Network, _

ma.Multiaddr) {

}

Unused Variables

Unused variables in the codebase can lead to confusion for developers, increase code
size, and mask potential issues where a variable was supposed to be used but was
accidentally overlooked. There are a lot of instances in the codebase where unused
variables are presented. It is recommended to remove them to make the codebase
cleaner.

Commented Code

Commented-out code sections can be misleading, as they often represent outdated
logic or approaches that were discarded. They clutter the codebase and can make it
harder for developers to understand the current logic. It's generally a good practice to
rely on version control systems (like Git) to keep track of older code versions, rather
than leaving them commented out in the codebase.

Outdated Dependencies

The following table lists outdated packages identified by the `go mod outdated` tool.
It is recommended to review and update these packages to their respective new
versions to ensure optimal performance and security.

Page 53

https://github.com/psampaz/go-mod-outdated

Script Network Audit

Page 54

Script Network Audit

DISCLAIMER
The following blockchain audit report has been carefully carried out based on the data
provided by the client. It aims to identify potential vulnerabilities in compliance with
globally recognized best practices regarding cybersecurity in blockchain technology. The
conclusions drawn herein relate only to the security aspects of the audited blockchain and
are not a reflection on the project or its team.

This report does not vouch for the absolute security of the blockchain, nor does it touch
upon the economic prospects of any related tokens or the broader project. The realm of
blockchain technology, being a subset of decentralized finance, inherently carries technical
risks and uncertainties. No part of this report should be viewed as a guarantee or
endorsement for third parties, particularly concerning the infallibility of the audited code,
its associated business model, or its legal standing.

Any third party should be cautious and refrain from using this report as the sole
determinant in decision-making processes, especially when it comes to buying or selling
tokens, products, or services. To be clear, this report is not an investment guide, and its
content is not to be mistaken as investment advice.

The blockchain's foundation – its platform, language, and related software – might have
inherent vulnerabilities that may not be captured in this audit. Our review is strictly
confined to the blockchain code as presented and highlighted within this report. The
blockchain language, which remains in its evolving phase, may have undiscovered risks.

The thoroughness of this audit notwithstanding, it shouldn't be the only tool you rely upon.
It is imperative to understand that no single audit can conclusively validate the
functionality and security of a blockchain. Thus, for a comprehensive security assessment,
we advise seeking multiple independent audits and initiating a public bug bounty program.

Page 55

