
Audit Report
ScriptPay
December 2023

Repository scriptnetwork/Node-Network-guide/blob/smart-contracts/ScriptPay.sol

Commit e4f3cdb39aee99dd80aaa86ddb430468581e18bb

Audited by © cyberscope

https://github.com/scriptnetwork/Node-Network-guide/blob/smart-contracts/ScriptPay.sol

ScriptPay Token Audit 1

Analysis

⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description Status

⬤ ST Stops Transactions Passed

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

ScriptPay Token Audit 2

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ UOD Unnecessary Override Declaration Unresolved

⬤ L02 State Variables could be Declared Constant Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L09 Dead Code Elimination Unresolved

⬤ L19 Stable Compiler Version Unresolved

ScriptPay Token Audit 3

Table of Contents
Analysis 1
Diagnostics 2
Table of Contents 3
Review 4

Audit Updates 4
Source Files 4

Findings Breakdown 5
UOD - Unnecessary Override Declaration 6

Description 6
Recommendation 6

L02 - State Variables could be Declared Constant 7
Description 7
Recommendation 7

L04 - Conformance to Solidity Naming Conventions 8
Description 8
Recommendation 8

L09 - Dead Code Elimination 10
Description 10
Recommendation 10

L19 - Stable Compiler Version 12
Description 12
Recommendation 12

Functions Analysis 13
Inheritance Graph 16
Flow Graph 17
Summary 18
Disclaimer 19
About Cyberscope 20

ScriptPay Token Audit 4

Review

Contract Name ScriptPay

Repository https://github.com/scriptnetwork/Node-Network-guide/blob/sm

art-contracts/ScriptPay.sol

Commit e4f3cdb39aee99dd80aaa86ddb430468581e18bb

Testing Deploy https://testnet.bscscan.com/address/0x852e8b930895e60c8b7

b5fbac0433bccfca2a7cb

Symbol SPAY

Decimals 18

Total Supply 5,000,000,000

Audit Updates

Initial Audit 13 Dec 2023

Source Files

Filename SHA256

contracts/ScriptPay.sol 6765e6e62b2d47a518527543ffffcfa55cd05b820114606268a389b18fc8

a1a3

https://testnet.bscscan.com/address/0x852e8b930895e60c8b7b5fbac0433bccfca2a7cb
https://testnet.bscscan.com/address/0x852e8b930895e60c8b7b5fbac0433bccfca2a7cb

ScriptPay Token Audit 5

Findings Breakdown

⬤ Critical 0

⬤ Medium 0

⬤ Minor / Informative 5

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 5 0 0 0

ScriptPay Token Audit 6

UOD - Unnecessary Override Declaration

Criticality Minor / Informative

Location contracts/ScriptPay.sol#L488,494

Status Unresolved

Description

The contract is currently implementing an override of the decimals function, which

simply returns the value of _decimals which is 18. This function is redundant since the

extending token contract already specifies 18 decimals as its standard. In the context of

ERC-20 tokens, 18 decimals is a common default, and overriding this function to return the

same value adds unnecessary complexity to the contract. This redundancy does not

contribute to the functionality of the contract and could potentially lead to confusion about

the necessity of this override.

uint8 _decimal=18;

function decimals() public view override returns (uint8) {
return _decimal;

}

Recommendation

It is recommended to remove the decimals function from the contract, assuming the

extending token contract already defines 18 decimals. This action will simplify the

contract by eliminating redundant code, thereby enhancing its clarity and efficiency. The

removal of this unnecessary override will not impact the contract's functionality but will

contribute to a cleaner and more maintainable codebase.

ScriptPay Token Audit 7

L02 - State Variables could be Declared Constant

Criticality Minor / Informative

Location contracts/ScriptPay.sol#L487,488,489,490

Status Unresolved

Description

State variables can be declared as constant using the constant keyword. This means that

the value of the state variable cannot be changed after it has been set. Additionally, the

constant variables decrease gas consumption of the corresponding transaction.

uint256 _totalSupply=5000 * 10**6 * 10**18
uint8 _decimal=18
string _name='ScriptPay'
string _symbol='SPAY'

Recommendation

Constant state variables can be useful when the contract wants to ensure that the value of a

state variable cannot be changed by any function in the contract. This can be useful for

storing values that are important to the contract's behavior, such as the contract's address

or the maximum number of times a certain function can be called. The team is advised to

add the constant keyword to state variables that never change.

ScriptPay Token Audit 8

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location contracts/ScriptPay.sol#L487,488,489,490

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

uint256 _totalSupply=5000 * 10**6 * 10**18
uint8 _decimal=18
string _name='ScriptPay'
string _symbol='SPAY'

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

ScriptPay Token Audit 9

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions

ScriptPay Token Audit 10

L09 - Dead Code Elimination

Criticality Minor / Informative

Location contracts/ScriptPay.sol#L402

Status Unresolved

Description

In Solidity, dead code is code that is written in the contract, but is never executed or

reached during normal contract execution. Dead code can occur for a variety of reasons,

such as:

● Conditional statements that are always false.

● Functions that are never called.

● Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can also

increase the size of the contract and the cost of deploying and interacting with it.

function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero

address");

_beforeTokenTransfer(account, address(0), amount);

uint256 accountBalance = _balances[account];
...

}
_totalSupply -= amount;

emit Transfer(account, address(0), amount);

_afterTokenTransfer(account, address(0), amount);
}

Recommendation

ScriptPay Token Audit 11

To avoid creating dead code, it's important to carefully consider the logic and flow of the

contract and to remove any code that is not needed or that is never executed. This can help

improve the clarity and efficiency of the contract.

ScriptPay Token Audit 12

L19 - Stable Compiler Version

Criticality Minor / Informative

Location contracts/ScriptPay.sol#L2

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.0;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

ScriptPay Token Audit 13

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

Context Implementation

_msgSender Internal

_msgData Internal

Ownable Implementation Context

Public️ ✓ -️

owner Public️ -️

renounceOwnership Public️ ✓ onlyOwner

transferOwnership Public️ ✓ onlyOwner

_setOwner Private ✓

IERC20 Interface

totalSupply External️ -️

balanceOf External️ -️

transfer External️ ✓ -️

allowance External️ -️

approve External️ ✓ -️

transferFrom External️ ✓ -️

ScriptPay Token Audit 14

IERC20Metadat
a

Interface IERC20

name External️ -️

symbol External️ -️

decimals External️ -️

ERC20 Implementation Context,
IERC20,
IERC20Meta
data

Public️ ✓ -️

name Public️ -️

symbol Public️ -️

decimals Public️ -️

totalSupply Public️ -️

balanceOf Public️ -️

transfer Public️ ✓ -️

allowance Public️ -️

approve Public️ ✓ -️

transferFrom Public️ ✓ -️

increaseAllowance Public️ ✓ -️

decreaseAllowance Public️ ✓ -️

_transfer Internal ✓

_mint Internal ✓

_burn Internal ✓

ScriptPay Token Audit 15

_approve Internal ✓

_beforeTokenTransfer Internal ✓

_afterTokenTransfer Internal ✓

ScriptPay Implementation ERC20,
Ownable

Public️ ✓ ERC20

decimals Public️ -️

totalSupply Public️ -️

ScriptPay Token Audit 16

Inheritance Graph

ScriptPay Token Audit 17

Flow Graph

ScriptPay Token Audit 18

Summary
ScriptPay contract implements a token mechanism. This audit investigates security issues,

business logic concerns and potential improvements. Script is an interesting project that

has a friendly and growing community. The Smart Contract analysis reported no compiler

error or critical issues. The contract Owner can access some admin functions that can not

be used in a malicious way to disturb the users’ transactions.

ScriptPay Token Audit 19

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

https://www.cyberscope.io

https://www.cyberscope.io

